Applications of the homotopy analysis method to optimal control problems

نویسندگان

  • Shubham Singh
  • SHUBHAM SINGH
  • James M. Longuski
  • William A. Crossley
  • Michael J. Grant
  • Weinong Wayne Chen
  • Abdul Kalam
چکیده

Singh, Shubham, MS, Purdue University, August 2016. Applications of the Homotopy Analysis Method to Optimal Control Problems. Major Professor: Michael J. Grant. Traditionally, trajectory optimization for aerospace applications has been performed using either direct or indirect methods. Indirect methods produce highly accurate solutions but suffer from a small convergence region, requiring initial guesses close to the optimal solution. In past two decades, a new series of analytical approximation methods have been used for solving systems of differential equations and boundary value problems. The Homotopy Analysis Method (HAM) is one such method which has been used to solve typical boundary value problems in finance, science, and engineering. In this investigation, a methodology is created to solve indirect trajectory optimization problems using the Homotopy Analysis Method. Use of the auxiliary convergence control parameter to widen the convergence region and increase the rate of convergence have been demonstrated on multiple optimal control problems. The guaranteed convergence and the ease of selecting the initial guess for trajectory optimization problems makes the method of high significance. It has been demonstrated that initial guesses for the optimal control problem can be generated using a simple approach based on only the initial boundary conditions. The approach has been demonstrated on the Zermelo’s problem and two cases of a 2D ascent problem. It has been established that for free final-time boundary value problems, finding the convergence region is much harder as compared to fixed final-time cases. To validate the approach, results are compared with those obtained using the MATLAB’s bvp4c function. A number of new challenges are discovered and listed during the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving The Optimal Control Problems Using Homotopy Perturbation Transform Method

Inthispaper,wesolveHamilton-Jocobi-Bellman(HJB)equationsarisinginoptimalcontrolproblems usingHomotopyPerturbationTransformMethod(HPTM).Theproposedmethodisacombinedform oftheLaplaceTransformationMethodwiththeHomotopyPerturbationMethodtoproduceahighly effectivemethodtohandlemanyproblems. ApplyingtheHPTM,solutionprocedurebecomeseasier, simplerandmorestraightforward. Someillustrativeexamplesaregive...

متن کامل

A Computational Method for Solving Optimal Control Problems and Their Applications

In order to obtain a solution to an optimal control problem‎, ‎a numerical technique based on state-control parameterization method is presented‎. ‎This method can be facilitated by the computation of performance index and state equation via approximating the control and state variable as a function of time‎. ‎Several numerical examples are presented to confirm the analytical findings and illus...

متن کامل

Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method

‎The controlled harmonic oscillator with retarded damping‎, ‎is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems‎. ‎In this paper‎, ‎to solve this problem‎, ‎we presented an analytical method‎. ‎This approach is based on the homotopy perturbation method‎. ‎The solution procedure becomes easier‎, ‎simpler and mor...

متن کامل

MODIFICATION OF THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR LANE-EMDEN TYPE EQUATIONS

In this paper, modication of the optimal homotopy asymptotic method (MOHAM) is appliedupon singular initial value Lane-Emden type equations and results are compared with the available exactsolutions. The modied algorithm give the exact solution for dierential equations by using one iterationonly.

متن کامل

A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation

In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018